题目内容
设α和β为不重合的两个平面,给出下列命题:
①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
②若α外一条直线l与α内的一条直线平行,则l和α平行;
③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.
上面命题中,真命题的序号是 (写出所有真命题的序号).
①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
②若α外一条直线l与α内的一条直线平行,则l和α平行;
③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.
上面命题中,真命题的序号是 (写出所有真命题的序号).
①②
命题①是两个平面平行的判定定理,正确;命题②是直线与平面平行的判定定理,正确;命题③中在α内可以作无数条直线与l垂直,但α与β只是相交关系,不一定垂直,错误;命题④中直线l与α垂直可推出l与α内两条直线垂直,但l与α内的两条直线垂直推不出直线l与α垂直,所以命题④不正确.
练习册系列答案
相关题目