ÌâÄ¿ÄÚÈÝ
£¨2012•º¼ÖݶþÄ££©ÒÑÖªÍÖÔ²
+
=1 (a £¾ b £¾ 0)ÉÏÈÎÒ»µãPµ½Á½¸ö½¹µãµÄ¾àÀëµÄºÍΪ2
£¬PÓëÍÖÔ²³¤ÖáÁ½¶¥µãÁ¬ÏßµÄбÂÊÖ®»ýΪ-
£®ÉèÖ±Ïßl¹ýÍÖÔ²CµÄÓÒ½¹µãF£¬½»ÍÖÔ²CÓÚÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
£¨¢ñ£©Èô
•
=
£¨OΪ×ø±êԵ㣩£¬Çó|y1-y2|µÄÖµ£»
£¨¢ò£©µ±Ö±ÏßlÓëÁ½×ø±êÖᶼ²»´¹Ö±Ê±£¬ÔÚxÖáÉÏÊÇ·ñ×Ü´æÔÚµãQ£¬Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб ½Ç»¥Îª²¹½Ç£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
x2 |
a2 |
y2 |
b2 |
3 |
2 |
3 |
£¨¢ñ£©Èô
OA |
OB |
4 |
tan¡ÏAOB |
£¨¢ò£©µ±Ö±ÏßlÓëÁ½×ø±êÖᶼ²»´¹Ö±Ê±£¬ÔÚxÖáÉÏÊÇ·ñ×Ü´æÔÚµãQ£¬Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб ½Ç»¥Îª²¹½Ç£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨I£©ÓÉÍÖÔ²µÄ¶¨Òå¿ÉÖª£ºa=
£»ÓÉPÓëÍÖÔ²³¤ÖáÁ½¶¥µãÁ¬ÏßµÄбÂÊÖ®»ýΪ-
£¬¿ÉµÃ-
=-
£¬¼´¿ÉµÃµ½a£¬b2£®
£¨II£©¼ÙÉè´æÔÚÒ»µãQ£¨m£¬0£©£¬Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©´úÈëÍÖÔ²µÄ·½³ÌÏûÈ¥yµÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬µÃµ½¸ùÓëϵÊýµÄ¹Øϵ£»ÓÉÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬¿ÉµÃkQA+kQB=0£¬ÀûÓÃбÂʼÆË㹫ʽµÃ³ö£¬°Ñ¸ùÓëϵÊýµÄ¹Øϵ´úÈë½â³ö¼´¿É£®
3 |
2 |
3 |
b2 |
a2 |
2 |
3 |
£¨II£©¼ÙÉè´æÔÚÒ»µãQ£¨m£¬0£©£¬Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©´úÈëÍÖÔ²µÄ·½³ÌÏûÈ¥yµÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬µÃµ½¸ùÓëϵÊýµÄ¹Øϵ£»ÓÉÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬¿ÉµÃkQA+kQB=0£¬ÀûÓÃбÂʼÆË㹫ʽµÃ³ö£¬°Ñ¸ùÓëϵÊýµÄ¹Øϵ´úÈë½â³ö¼´¿É£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÍÖÔ²µÄ¶¨ÒåÖªa=
£¬ÓÖ-
=-
£¬¡àb2=2£¬c2=a2-b2=1£®
¡àÍÖÔ²P£¨x0£¬y0£©µÄ·½³ÌÊÇ
+
=1£®
¡ß
•
=
£¬¡à|
|•|
|cos¡ÏAOB=
£¬
¡à|
|•|
|sin¡ÏAOB=4£¬
¡àS¡÷AOB=
|
|•|
|sin¡ÏAOB=2£¬
ÓÖS¡÷AOB=
|y1-y2|¡Á1£¬¹Ê|y1-y2|=4£®
£¨¢ò£©¼ÙÉè´æÔÚÒ»µãQ£¨m£¬0£©£¬Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬
ÒÀÌâÒâ¿ÉÖªÖ±Ïßl¡¢QA¡¢QBбÂÊ´æÔÚÇÒ²»ÎªÁ㣮
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©´úÈëÍÖÔ²µÄ·½³ÌÏûÈ¥yµÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôòx1+x2=
£¬x1•x2=
¡ßÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬
¡àkQA+kQB=0£¬¡à
+
=0£®
ÓÖy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
´úÈëÉÏʽ¿ÉµÃ2x1x2+2m-£¨m+1£©£¨x1+x2£©=0£¬
¡à2¡Á
+2m-(m+1)¡Á
=0£¬
»¯Îª2m-6=0£¬½âµÃm=3£¬
¡à´æÔÚQ£¨3£¬0£©Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£®
3 |
b2 |
a2 |
2 |
3 |
¡àÍÖÔ²P£¨x0£¬y0£©µÄ·½³ÌÊÇ
x2 |
3 |
y2 |
2 |
¡ß
OA |
OB |
4 |
tan¡ÏAOB |
OA |
OB |
4 |
tan¡ÏAOB |
¡à|
OA |
OB |
¡àS¡÷AOB=
1 |
2 |
OA |
OB |
ÓÖS¡÷AOB=
1 |
2 |
£¨¢ò£©¼ÙÉè´æÔÚÒ»µãQ£¨m£¬0£©£¬Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬
ÒÀÌâÒâ¿ÉÖªÖ±Ïßl¡¢QA¡¢QBбÂÊ´æÔÚÇÒ²»ÎªÁ㣮
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©´úÈëÍÖÔ²µÄ·½³ÌÏûÈ¥yµÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôòx1+x2=
6k2 |
3k2+2 |
3k2-6 |
3k2+2 |
¡ßÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£¬
¡àkQA+kQB=0£¬¡à
y1 |
x1-m |
y2 |
x2-m |
ÓÖy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
´úÈëÉÏʽ¿ÉµÃ2x1x2+2m-£¨m+1£©£¨x1+x2£©=0£¬
¡à2¡Á
3k2-6 |
3k2+2 |
6k2 |
3k2+2 |
»¯Îª2m-6=0£¬½âµÃm=3£¬
¡à´æÔÚQ£¨3£¬0£©Ê¹µÃÖ±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÍÖÔ²µÄ¶¨Òå¡¢ÍÖÔ²ÉÏÒ»µãPÓëÍÖÔ²³¤ÖáÁ½¶¥µãÁ¬ÏßµÄбÂÊÖ®»ýΪ-
¡¢Ö±ÏßQA¡¢QBµÄÇãб½Ç»¥Îª²¹½Ç?kQA+kQB=0¡¢Ö±ÏßÓëÍÖÔ²µÄ·½³ÌÏཻÎÊÌâת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢Ð±ÂʼÆË㹫ʽµÈÊǽâÌâµÄ¹Ø¼ü£®
b2 |
a2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿