题目内容
已知四棱锥
中,底面
为直角梯形,
.
,
,
为正三角形,且面
面
,异面直线
与
所成的角的余弦值为
,
为
的中点.
(Ⅰ)求证:
面
;
(Ⅱ)求点
到平面
的距离;
(Ⅲ)求平面
与平面
相交所成的锐二面角的大小.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010105384789.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009789603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009804526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009820580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009836735.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009851663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009867521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009882468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009804526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009914365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010007385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010023386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010132318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010148383.png)
(Ⅰ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010194472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
(Ⅱ)求点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010366309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010382453.png)
(Ⅲ)求平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010444448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010105384789.jpg)
(1)取
中点为
,由于
,所以
为平行四边形
所以
,又因为
分别是
的中点,所以
。所以面
面
,所以
面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
(2)因为
,
所以
,在
中,
,可得
,又因为面
面
,且
所以
面
,所以
面
,所以
,所以
面
,所以
即为点
到面
的距离,在
中可解得,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011130674.png)
(3)设面
与面
所成二面角为
,因为
面
,
面
则面
是面
的射影,则
=
,所以面
与面
所成二面角为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011364362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010553405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010569302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010584714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009804526.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010616588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010631426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010647508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010662579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010678534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010194472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010662579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010616588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010787909.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010803493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010818907.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010834536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009882468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201009804526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010912529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010928429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010928429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010974469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010990564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011006432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010382453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011037396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010366309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010382453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010803493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011130674.png)
(3)设面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010444448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011177297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010928429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011224409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010444448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011302908.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011318413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010444448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201010210439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201011364362.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目