题目内容

已知椭圆C1的方程为
x24
+y2=1
,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)设过定点M(0,2)的直线l与椭圆C1交于不同的两点A、B,且满足|OA|2+|OB|2>|AB|2,(其中O为原点),求l斜率的取值范围.
分析:(1)设出双曲线的标准方程,根据根据椭圆方程求得双曲线的左右顶点和焦点,进而求得双曲线方程中的a和b,则双曲线方程可得.
(2)将直线代入双曲线方程消去y,进而根据判别式求得k的范围,设出A,B的坐标,根据韦达定理求得x1+x2和x1x2的表达式,由|OA|2+|OB|2>|AB|2,可得∠AOB为锐角,从而有
OA
OB
>0求得关于k的不等式,求得k的范围,最后综合求得答案.
解答:解:(1)∵椭圆C1的方程为
x2
4
+y2=1
左、右顶点分别为(2,0),(-2,0),左、右焦点分别为(-
3
,0
),(
3
,0)

可设C2的方程为
x2
a2
-
y2
b2
=1
,则a2=4-1=3,再由a2+b2=c2得b2=1.
故C2的方程为
x2
3
-y2=1

(2)显然直线x=0不满足题设条件,可设直线l:y=kx-2,A(x1,y2),B(x2,y2),
联立
y=kx-2
x2
4
+y2=1
,消去y,整理得:(k2+
1
4
)x2+4kx+3=0

x1+x2=-
4k
k2+
1
4
x1x2=
3
k2+
1
4

一会
△=(4k)2-4(k+
1
4
)×3=4k2-3>0
得:k<
3
2
k>-
3
2

∵|OA|2+|OB|2>|AB|2
∴0°<∠AOB<90°
∴cos∠AOB>0
OA
OB
>0

OA
OB
=x1x2+y1y2>0

又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=
3k2
k2+
1
4
+
-8k2
k2+
1
4
+4
=
-k2+1
k2+
1
4

3
k2+
1
4
+
-k2+1
k2+
1
4
>0
,即k2<4
∴-2<k<2
故由①、②得-2<k<-
3
2
3
2
<k<2
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,是高考的热点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网