题目内容
在平面内,三角形的面积为S,周长为C,则它的内切圆的半径γ=2S | C |
分析:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.但由于类比推理的结果不一定正确,故我们还需要进一步的证明.
解答:解:结论:若三棱锥表面积为S,体积为V,则其内切球半径r=
”证明如下:
设三棱锥的四个面积分别为:S1,S2,S3,S4,
由于内切球到各面的距离等于内切球的半径
∴V=
S1×r+
S2×r+
S3×r+
S4×r=
S×r
∴内切球半径r=
故答案为:
.
3V |
S |
设三棱锥的四个面积分别为:S1,S2,S3,S4,
由于内切球到各面的距离等于内切球的半径
∴V=
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
∴内切球半径r=
3V |
S |
故答案为:
3V |
S |
点评:本题考查的知识点是类比推理、棱锥的结构特征,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.
练习册系列答案
相关题目
在平面内,三角形的面积为S,周长为C,则它的内切圆的半径.在空间中,三棱锥的体积为V,表面积为S,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=___________。