题目内容

已知曲线,则过点P(2,4)的切线方程为   
【答案】分析:设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可.
解答:解:设曲线 y=x3+与过点P(2,4)的切线相切于点A(xx3+),
则切线的斜率 k=y′|x=x=x2
∴切线方程为y-( x3+)=x2(x-x),
即 y=x•x-x+
∵点P(2,4)在切线上,
∴4=2x2-x3+,即x3-3x2+4=0,
∴x3+x2-4x2+4=0,
∴(x+1)(x-2)2=0
解得x=-1或x=2
故所求的切线方程为4x-y-4=0或x-y+2=0.
故答案为:x-y+2=0,或4x-y-4=0.
点评:此题考查学生会利用导数研究曲线上某点的切线方程,是一道综合题.学生在解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;同时解决“过某点的切线”问题,一般是设出切点坐标解决.本题易主观地认为点P即为切点.将它与求曲线上某点处的切线方程混淆.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网