题目内容

已知
3sinα-2cosα
4sinα-3cosα
=
4
5
,求
(1)sinα-cosα
(2)
2
3
sin2α+
1
4
cos2α
分析:(1)由
3sinα-2cosα
4sinα-3cosα
=
4
5
,可得
3tanα-2
4tanα-3
=
4
5
,解得tanα=2,分α 是第一象限角和α 是第二象限角两种情况分别求出sinα和cosα的值,进而求得sinα-cosα 的值.
(2)由
2
3
sin2α+
1
4
cos2α
=
2
3
sin2α+
1
4
cos2α
cos2α +sin2α
=
2
3
tan2α+
1
4
1 +tan2α
,把tanα=2代入运算求得结果.
解答:解:(1)∵
3sinα-2cosα
4sinα-3cosα
=
4
5
,∴
3tanα-2
4tanα-3
=
4
5
,∴tanα=2.
当α 是第一象限角时,sinα=
2
5
5
,cosα=
5
5
,sinα-cosα=
5
5

当α 是第三象限角时,sinα=-
2
5
5
,cosα=-
5
5
,sinα-cosα=-
5
5

(2)
2
3
sin2α+
1
4
cos2α
=
2
3
sin2α+
1
4
cos2α
cos2α +sin2α
=
2
3
tan2α+
1
4
1 +tan2α
=
7
12
点评:本题考查同角三角函数的基本关系,体现了分类讨论的数学思想,求得tanα=2,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网