题目内容
(14分)已知定义在R上函数是奇函数.
(1)对于任意不等式恒成立, 求的取值范围.
(2)若对于任意实数,m,x,恒成立,求t的取值范围.
(3)若是定义在R上周期为2的奇函数,且当时,,求的所有解
(1)∵为奇函数,即 ∴
∴ ·····(2分)
易证在R上单调递减 ·····(3分)
由得
即恒成立
又
∴ ·····(5分)
(2)由单减可知
又恒成立
∴只需 ·····(7分)
即恒成立
∴
即 ∴ ·····(9分)
(3)∵为奇函数
又的周期为 ∴
∴ ·····(10分)
当时为单调递减
∴ ·····(11分)
由g(x)的周期为2,所有解为 ·····(14分)