题目内容
【题目】设全集U=R,集合A={x|﹣1<x<4},B={y|y=x+1,x∈A},则A∩B=;(UA)∩(UB)= .
【答案】(0,4);(﹣∞,﹣1]∪[5,+∞)
【解析】解:全集U=R,集合A={x|﹣1<x<4}=(﹣1,4),B={y|y=x+1,x∈A}={y|0<y<5}=(0,5),
∴A∩B=(0,4)
∴UA={x|x≤1或x≥4}=(﹣∞,﹣1]∪[4,+∞),
UB={y|y≤0或y≥5}=(﹣∞,0]∪[5,+∞);
∴(UA)∩(UB)=(﹣∞,﹣1]∪[5,+∞).
所以答案是:(0,4),(﹣∞,﹣1]∪[5,+∞)
【考点精析】根据题目的已知条件,利用交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.