题目内容

已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是上述椭圆和双曲线的离心率,则有

A.+=4                               B.+=2

C.e12+e22=4                                  D.e12+e22=2

【答案】B  设椭圆长轴长为2a1,双曲线实轴长为2a2,焦距均为2c,

∴|PF2|=a1+a2,|PF1|=a1-a2.

∵PF1与PF2垂直,∴|PF1|2+|PF2|2=|F1F2|2.

∴(a1+a2)2+(a1-a2)2=4c2,∴2a12+2a22=4c2.∴+=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网