ÌâÄ¿ÄÚÈÝ
4£®ÈçͼËùʾÊýÕ󣬼ÇanΪÊý×ÖnµÄ¸öÊý£¬¼ÇAnΪan¸öÊý×ÖnµÄºÍ£®ÒÑÖªÊýÁÐ{bn}Âú×ãbn=$\frac{1}{{A}_{n}+5n}$£¬BnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒBn£¼tºã³ÉÁ¢£®£¨1£©an=2n-1£»An=2n2-n£»
£¨2£©ÒÑÖªÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2{t}^{2}}$+$\frac{{y}^{2}}{{t}^{2}}$=1£¨t£¾0£©£®PΪCµÄ϶¥µã£¬¹ýµãPµÄÖ±ÏßlбÂÊΪt£®Ö±Ïßl¹ý¶¨µãM£¬ÇÒÓëC½»ÓÚÁíÒ»µãN£®ÈôPNµÄÖеãΪE£¬Çó$\frac{EP}{MP}$µÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨1£©ÓÉÒÑÖª¹éÄɿɵÃan=2n-1£¬ÔòAn=an•n=2n2-n£»
£¨2£©ÓÉ£¨1£©¿ÉµÃbn=$\frac{1}{{A}_{n}+5n}$=$\frac{1}{2{n}^{2}+4n}$=$\frac{1}{4}$£¨$\frac{1}{n}$-$\frac{1}{n+2}$£©£¬ÀûÓÃÁÑÏîÏàÏû·¨¿ÉµÃBn=$\frac{3}{8}$-$\frac{1}{4}$£¨$\frac{1}{n+1}$+$\frac{1}{n+2}$£©£¬½ø¶ø¿ÉµÃt¡Ý$\frac{3}{8}$£¬Çó³ö$\frac{EP}{MP}$µÄ±í´ïʽ£¬½ø¶ø¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓÉanΪÊý×ÖnµÄ¸öÊý£¬
¿ÉµÃ£ºa1=1£¬
a2=3£¬
a3=5£¬
a4=7£¬
¡
¹éÄɿɵãºan=2n-1£¬
ÔòAn=an•n=2n2-n£»
¹Ê´ð°¸Îª£º2n-1£¬2n2-n£»
£¨2£©¡ßbn=$\frac{1}{{A}_{n}+5n}$=$\frac{1}{2{n}^{2}+4n}$=$\frac{1}{4}$£¨$\frac{1}{n}$-$\frac{1}{n+2}$£©£¬
¡àBn=$\frac{1}{4}$£¨1-$\frac{1}{3}$£©+$\frac{1}{4}$£¨$\frac{1}{2}$-$\frac{1}{4}$£©+$\frac{1}{4}$£¨$\frac{1}{3}$-$\frac{1}{5}$£©+$\frac{1}{4}$£¨$\frac{1}{4}$-$\frac{1}{6}$£©+¡+$\frac{1}{4}$£¨$\frac{1}{n-1}$-$\frac{1}{n+1}$£©+$\frac{1}{4}$£¨$\frac{1}{n}$-$\frac{1}{n+2}$£©=$\frac{1}{4}$£¨1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$£©=$\frac{3}{8}$-$\frac{1}{4}$£¨$\frac{1}{n+1}$+$\frac{1}{n+2}$£©£¬
ÈôBn£¼tºã³ÉÁ¢£¬Ôòt¡Ý$\frac{3}{8}$£¬
¡ßPΪCµÄ϶¥µã£¬¹ÊPµã×ø±êΪ£¨0£¬-t£©£¬
¹ýµãPµÄÖ±ÏßlбÂÊΪtÖ±Ïßl·½³ÌΪ£ºy=tx-t£¬
Ôòl¹ý¶¨µãM£¨1£¬0£©£¬ÇÒÓëC½»ÓÚÁíÒ»µãN£®
½«y=tx-t´úÈë$\frac{{x}^{2}}{2{t}^{2}}$+$\frac{{y}^{2}}{{t}^{2}}$=1µÃ£º£¨1+$\frac{1}{2{t}^{2}}$£©x2-2x=0
ÔòNµãµÄºá×ø±êx=$\frac{4{t}^{2}}{2{t}^{2}+1}$£¬
¹ÊPN=$\sqrt{1+{t}^{2}}$•$\frac{4{t}^{2}}{2{t}^{2}+1}$£¬
ÈôPNµÄÖеãΪE£¬ÔòEP=$\sqrt{1+{t}^{2}}$•$\frac{2{t}^{2}}{2{t}^{2}+1}$£¬
MP=$\sqrt{1+{t}^{2}}$£¬
¡à$\frac{EP}{MP}$=$\frac{2{t}^{2}}{2{t}^{2}+1}$=1-$\frac{1}{2{t}^{2}+1}$¡Ý$\frac{9}{41}$£¬
ÓÖÓÉ$\frac{EP}{MP}$£¼1£¬
¿ÉµÃ£º$\frac{EP}{MP}$¡Ê[$\frac{9}{41}$£¬1£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǹéÄÉÍÆÀí£¬ÊýÁÐÇóºÍ£¬Ö±ÏßÓëԲ׶ÇúÏߵĹØϵ£¬º¯ÊýµÄÖµÓò£¬×ÛºÏÐÔ¿É£¬ÄѶȽϴó£®
A£® | £¨-¡Þ£¬2] | B£® | £¨-¡Þ£¬-2£© | C£® | £¨-2£¬2] | D£® | £¨-2£¬2£© |
A£® | 3£¬9£¬15£¬11 | B£® | 3£¬12£¬21£¬40 | C£® | 8£¬20£¬32£¬40 | D£® | 2£¬12£¬22£¬32 |
A£® | £¨1£¬6£© | B£® | [$\frac{6}{5}$£¬6£© | C£® | [1£¬$\frac{6}{5}$] | D£® | £¨1£¬+¡Þ£© |
A£® | $\frac{r}{2}$ | B£® | $\frac{\sqrt{3}}{2}$r | C£® | $\frac{\sqrt{3}}{3}$r | D£® | r |