题目内容
【题目】有A,B,C三个城市,上午从A城去B城有5班汽车,2班火车,都能在12:00前到达B城,下午从B城去C城有3班汽车,2班轮船.某人上午从A城出发去B城,要求12:00前到达,然后他下午去C城,问有多少种不同的走法?
【答案】解:由题意,从A地到B地每天有汽车5班,故坐汽车有5种走法,从A地到B地每天有火车2班,故坐火车有2种走法,从A到B共有5+2=7种结果,从B到C有两类,一类有3种走法,另一类有2种走法,共有3+2=5种走法.
综上,从A地到C地不同的走法数为7×5=35种
【解析】有汽车5班,火车2班,故此人从A地到B地的乘坐方法可以分为2类,根据出2类走法的方法种数,再相加求出不同的走法,选出正确答案,后一段路程有两类走法,根据原理得到结果
练习册系列答案
相关题目