题目内容
设f(logax)=
,(a>0,a≠1)
求证:
(1)过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)>3.
a(x2-1) |
x(a2-1) |
求证:
(1)过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)>3.
证明:(1)令t=logax,则x=at,f(t)=
(at-a-t)(t∈R),
∴f(x)=
(ax-a-x)(x∈R),
设x1<x2,f(x1)-f(x2)=
,
(1)当a>1时,因为x10,ax1-ax2<0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
(2)当0<a<1时,因为a2-1<0,ax1-ax2>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
∴x1<x2时,恒有f(x1)<f(x2),∴K=
>0,
故过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)=
(a3-a-3)=
=
=a2+
+1≥2
+1=3,
∵a>0,a≠1,∴a2≠
,∴上述不等式不能取等号,
∴f(3)>3.
a |
a2-1 |
∴f(x)=
a |
a2-1 |
设x1<x2,f(x1)-f(x2)=
a(ax1-ax2)(ax1+x2+1) |
(a2-1)ax1+x2 |
(1)当a>1时,因为x10,ax1-ax2<0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
(2)当0<a<1时,因为a2-1<0,ax1-ax2>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
∴x1<x2时,恒有f(x1)<f(x2),∴K=
f(x1)-f(x2) |
x1-x2 |
故过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)=
a |
a2-1 |
a(a6-1) |
a3(a2-1) |
a4+a2+1 |
a2 |
1 |
a2 |
a2•
|
∵a>0,a≠1,∴a2≠
1 |
a2 |
∴f(3)>3.

练习册系列答案
相关题目