ÌâÄ¿ÄÚÈÝ
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªÏòÁ¿
ÔÚ¾ØÕóM=
±ä»»Ïµõ½µÄÏòÁ¿ÊÇ
£®
£¨¢ñ£©ÇómµÄÖµ£»
£¨¢ò£©ÇóÇúÏßy2-x+y=0ÔÚ¾ØÕóM-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µÄÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º¼«×ø±êÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êƽÃæÄÚ£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªµãMµÄ¼«×ø±êΪ(4
£¬
)£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
£¨¦ÁΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÉèʵÊýa£¬bÂú×ã2a+b=9£®
£¨¢ñ£©Èô|9-b|+|a|£¼3£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©Èôa£¬b£¾0£¬ÇÒz=a2b£¬ÇózµÄ×î´óÖµ£®
ÒÑÖªÏòÁ¿
|
|
|
£¨¢ñ£©ÇómµÄÖµ£»
£¨¢ò£©ÇóÇúÏßy2-x+y=0ÔÚ¾ØÕóM-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µÄÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º¼«×ø±êÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êƽÃæÄÚ£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªµãMµÄ¼«×ø±êΪ(4
2 |
¦Ð |
4 |
|
£¨¢ñ£©ÇóÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÉèʵÊýa£¬bÂú×ã2a+b=9£®
£¨¢ñ£©Èô|9-b|+|a|£¼3£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©Èôa£¬b£¾0£¬ÇÒz=a2b£¬ÇózµÄ×î´óÖµ£®
£¨1£©£¨¢ñ£©ÒòΪ
=
£¬
ËùÒÔ£¬
=
£¬¼´m=1£®¡£¨3·Ö£©
£¨¢ò£©ÒòΪM=
£¬ËùÒÔM-1=
£®¡£¨4·Ö£©
ÉèÇúÏßy2-x+y=0ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóM-1Ëù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊÇ£¨x'£¬y'£©£®
ÓÉ
=
=
£¬¡£¨5·Ö£©
ËùÒÔ
µÃ
´úÈëÇúÏßy2-x+y=0µÃy'2=x'£®¡£¨6·Ö£©
ÓÉ£¨x£¬y£©µÄÈÎÒâÐÔ¿ÉÖª£¬ÇúÏßy2-x+y=0ÔÚ¾ØÕóM-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÇúÏß·½³ÌΪy2=x£®¡£¨7·Ö£©
£¨2£©£¨¢ñ£©ÓɵãMµÄ¼«×ø±êΪ(4
£¬
)µÃµãMµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£¬
ËùÒÔÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³ÌΪy=x£®¡£¨3·Ö£©
£¨¢ò£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì
£¨¦ÁΪ²ÎÊý£©
»¯ÎªÆÕͨ·½³ÌΪ£¨x-1£©2+y2=2£¬¡£¨5·Ö£©
Ô²ÐÄΪA£¨1£¬0£©£¬°ë¾¶Îªr=
£®
ÓÉÓÚµãMÔÚÇúÏßCÍ⣬¹ÊµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀë×îСֵΪMA-r=5-
£®¡£¨7·Ö£©
£¨3£©£¨¢ñ£©ÓÉ2a+b=9µÃ9-b=2a£¬¼´|6-b|=2|a|£®
ËùÒÔ|9-b|+|a|£¼3¿É»¯Îª3|a|£¼3£¬¼´|a|£¼1£¬½âµÃ-1£¼a£¼1£®
ËùÒÔaµÄÈ¡Öµ·¶Î§-1£¼a£¼1£®¡£¨4·Ö£©
£¨¢ò£©ÒòΪa£¬b£¾0£¬ËùÒÔz=a2b=a•a•b¡Ü(
)3=(
)3=33=27£¬¡£¨6·Ö£©
µ±ÇÒ½öµ±a=b=3ʱ£¬µÈºÅ³ÉÁ¢£®
¹ÊzµÄ×î´óֵΪ27£®¡£¨7·Ö£©
|
|
|
ËùÒÔ£¬
|
|
£¨¢ò£©ÒòΪM=
|
|
ÉèÇúÏßy2-x+y=0ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóM-1Ëù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊÇ£¨x'£¬y'£©£®
ÓÉ
|
|
|
|
ËùÒÔ
|
|
ÓÉ£¨x£¬y£©µÄÈÎÒâÐÔ¿ÉÖª£¬ÇúÏßy2-x+y=0ÔÚ¾ØÕóM-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÇúÏß·½³ÌΪy2=x£®¡£¨7·Ö£©
£¨2£©£¨¢ñ£©ÓɵãMµÄ¼«×ø±êΪ(4
2 |
¦Ð |
4 |
ËùÒÔÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³ÌΪy=x£®¡£¨3·Ö£©
£¨¢ò£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì
|
»¯ÎªÆÕͨ·½³ÌΪ£¨x-1£©2+y2=2£¬¡£¨5·Ö£©
Ô²ÐÄΪA£¨1£¬0£©£¬°ë¾¶Îªr=
2 |
ÓÉÓÚµãMÔÚÇúÏßCÍ⣬¹ÊµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀë×îСֵΪMA-r=5-
2 |
£¨3£©£¨¢ñ£©ÓÉ2a+b=9µÃ9-b=2a£¬¼´|6-b|=2|a|£®
ËùÒÔ|9-b|+|a|£¼3¿É»¯Îª3|a|£¼3£¬¼´|a|£¼1£¬½âµÃ-1£¼a£¼1£®
ËùÒÔaµÄÈ¡Öµ·¶Î§-1£¼a£¼1£®¡£¨4·Ö£©
£¨¢ò£©ÒòΪa£¬b£¾0£¬ËùÒÔz=a2b=a•a•b¡Ü(
a+a+b |
3 |
2a+b |
3 |
µ±ÇÒ½öµ±a=b=3ʱ£¬µÈºÅ³ÉÁ¢£®
¹ÊzµÄ×î´óֵΪ27£®¡£¨7·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿