题目内容
两人相约在7:30到8:00之间相遇,早到者应等迟到者10分钟方可离去,如果两人出发是各自独立的,在7:30到8:00之间的任何时刻是等可能的,问两人相遇的可能性有多大 .
解析试题分析:由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0<x<1 ,0<y<1},做出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|0<x<1,0<y<1,|x-y|< },算出事件对应的集合表示的面积,根据几何概型概率公式得到结果.解:设两人到达约会地点的时刻分别为x,y,依题意,必须满足|x-y|≤才能相遇.我们把他们到达的时刻分别作为横坐标和纵坐标,于是两人到达的时刻均匀地分布在一个边长为1的正方形Ⅰ内,如图所示,而相遇现象则发生在阴影区域G内,即甲、乙两人的到达时刻(x,y)满足|x-y|≤,所以两人相遇的概率为区域G与区域Ⅰ的面积之比:
考点:几何概型
点评:本题是一个几何概型,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果
练习册系列答案
相关题目