题目内容
84已知数列{an}的前n项和为Sn,满足an+Sn=2n.
(Ⅰ)证明:数列{an-2}为等比数列,并求出an;
(Ⅱ)设bn=(2-n)(an-2),求{bn}的最大项.
解:(Ⅰ)证明:由a1+s1=2a1=2得a1=1;
由an+Sn=2n得
an+1+Sn+1=2(n+1)
两式相减得2an+1-an=2,即2an+1-4=an-2,即an+1-2=(an-2)
是首项为a1-2=-1,公比为的等比数列.故an-2=-,故an=2-,.
(Ⅱ)解:由(Ⅰ)知
由
由bn+1-bn<0得n>3,所以b1<b2<b3=b4>b5>…>bn
故bn的最大项为.
分析:(Ⅰ)由题设条件进行变形,整理成等比数列的形式,得证.
(Ⅱ)求出bn=(2-n)(an-2)的通项公式,再作差比较相邻项的大小,即可找出最大项.
点评:本题考查等比关系的确定以及用作差法求数列的最大项,属于数列中的中档题,有一定的综合性,要求答题者有较好的观察能力及转化化归的能力.
由an+Sn=2n得
an+1+Sn+1=2(n+1)
两式相减得2an+1-an=2,即2an+1-4=an-2,即an+1-2=(an-2)
是首项为a1-2=-1,公比为的等比数列.故an-2=-,故an=2-,.
(Ⅱ)解:由(Ⅰ)知
由
由bn+1-bn<0得n>3,所以b1<b2<b3=b4>b5>…>bn
故bn的最大项为.
分析:(Ⅰ)由题设条件进行变形,整理成等比数列的形式,得证.
(Ⅱ)求出bn=(2-n)(an-2)的通项公式,再作差比较相邻项的大小,即可找出最大项.
点评:本题考查等比关系的确定以及用作差法求数列的最大项,属于数列中的中档题,有一定的综合性,要求答题者有较好的观察能力及转化化归的能力.
练习册系列答案
相关题目