题目内容
设![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_ST/0.png)
【答案】分析:先将f(1)+f(2)+f(3)+…+f(n)用f(n)表示,然后代入f(1)+f(2)+f(3)+…+f(n)+n=ng(n)f(n)可求出g(n)的解析式.
解答:解:f(1)=1
f(2)=1+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/0.png)
f(3)=1+
+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/2.png)
…
f(n)=1+
+
+…![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/5.png)
所以f(1)+f(2)+f(3)+…+f(n)
=n×1+
(n-1)+
(n-2)…
[n-(n-1)]
=n[1+
+
+…
]-[
+
+
…
]
=nf(n)-[1-
+1-
+1-
…1-
]
=nf(n)-[(n-1)-f(n)+1]
=(n+1)f(n)-n
因为f(1)+f(2)+f(3)+…+f(n)+n=ng(n)f(n)
所以(n+1)f(n)=ng(n)f(n)
所以g(n)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/20.png)
故答案为:存在,通项公式![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/21.png)
点评:本题主要考查了数列的求和,以及存在性问题,同时考查了计算能力和转化能力,属于中档题.
解答:解:f(1)=1
f(2)=1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/0.png)
f(3)=1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/2.png)
…
f(n)=1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/5.png)
所以f(1)+f(2)+f(3)+…+f(n)
=n×1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/8.png)
=n[1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/15.png)
=nf(n)-[1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/19.png)
=nf(n)-[(n-1)-f(n)+1]
=(n+1)f(n)-n
因为f(1)+f(2)+f(3)+…+f(n)+n=ng(n)f(n)
所以(n+1)f(n)=ng(n)f(n)
所以g(n)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/20.png)
故答案为:存在,通项公式
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915694111/SYS201310241833089156941011_DA/21.png)
点评:本题主要考查了数列的求和,以及存在性问题,同时考查了计算能力和转化能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目