题目内容

16.已知函数f(x)=2x3+ax2+2在x=1时取得极值.
(1)求a;
(2)求f(x)在$[-\frac{1}{2},2]$上的最值.

分析 (1)利用函数的导数,通过函数的极值点,求解即可.
(2)求出函数的极值点,判断函数的单调性,然后求解最值.

解答 (本题满分12分)
解:(1)f′(x)=6x2+2ax,由题意得f′(1)=0⇒a=-3;
(2)由(1)f′(x)=6x(x-1),令f′(x)=0⇒x=0或x=1
当x变化时,f′(x),f(x)的变化情况如下表:

x$(-\frac{1}{2},0)$0(0,1)1 (1,2)
f′(x)+0-    0+
f(x)21
$f(-\frac{1}{2})=1$,f(0)=2,f(1)=1,f(2)=6
所以fmax(x)=6,fmin(x)=1

点评 本题考查函数的极值点以及函数的单调性的应用,函数的最值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网