题目内容
设等差数列{an}与{bn}的前n项之和分别为Sn与Sn′,若
=
,则
=
.
Sn |
Sn′ |
7n+2 |
n+3 |
a7 |
b7 |
93 |
16 |
93 |
16 |
分析:利用等差数列的性质S2n-1=(2n-1)•an,S′2n-1=(2n-1)•bn即可求得
.
a7 |
b7 |
解答:解:∵{an}为等差数列,其前n项之和为Sn,
∴S2n-1=
=
=(2n-1)•an,
同理可得,S′2n-1=(2n-1)•bn,
∴
=
,
又
=
,
∴
=
=
,
∴
=
,
∴
=
.
故答案为:
.
∴S2n-1=
(2n-1)(a1+a2n-1) |
2 |
=
(2n-1)×2an |
2 |
=(2n-1)•an,
同理可得,S′2n-1=(2n-1)•bn,
∴
an |
bn |
S2n-1 |
S2n-1′ |
又
Sn |
S′n |
7n+2 |
n+3 |
∴
S2n-1 |
S′2n-1 |
7(2n-1)+2 |
(2n-1)+3 |
14n-5 |
2n+2 |
∴
an |
bn |
14n-5 |
2n+2 |
∴
a7 |
b7 |
93 |
16 |
故答案为:
93 |
16 |
点评:本题考查等差数列的性质,求得
=
是关键,考查熟练应用等差数列解决问题的能力,属于中档题.
an |
bn |
S2n-1 |
S′2n-1 |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目