题目内容

设等差数列{an}与{bn}的前n项之和分别为SnSn,若
Sn
Sn
=
7n+2
n+3
,则
a7
b7
=
93
16
93
16
分析:利用等差数列的性质S2n-1=(2n-1)•an,S′2n-1=(2n-1)•bn即可求得
a7
b7
解答:解:∵{an}为等差数列,其前n项之和为Sn
∴S2n-1=
(2n-1)(a1+a2n-1)
2

=
(2n-1)×2an
2

=(2n-1)•an
同理可得,S′2n-1=(2n-1)•bn
an
bn
=
S2n-1
S2n-1

Sn
S′n
=
7n+2
n+3

S2n-1
S′2n-1
=
7(2n-1)+2
(2n-1)+3
=
14n-5
2n+2

an
bn
=
14n-5
2n+2

a7
b7
=
93
16

故答案为:
93
16
点评:本题考查等差数列的性质,求得
an
bn
=
S2n-1
S′2n-1
是关键,考查熟练应用等差数列解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网