题目内容
4、集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是( )
分析:本题考查的是函数的概念和图象问题.在解答时首先要对函数的概念从两个方面进行理解:一是对于定义域内的任意一个自变量在值域当中都有唯一确定的元素与之对应,二是满足一对一、多对一的标准,绝不能出现一对多的现象.
解答:解:由题意可知:M={x|-2≤x≤2},N={y|0≤y≤2},
对在集合M中(0,2]内的元素没有像,所以不对;
对不符合一对一或多对一的原则,故不对;
对在值域当中有的元素没有原像,所以不对;
而符合函数的定义.
故选B.
对在集合M中(0,2]内的元素没有像,所以不对;
对不符合一对一或多对一的原则,故不对;
对在值域当中有的元素没有原像,所以不对;
而符合函数的定义.
故选B.
点评:本题考查的是函数的概念和函数图象的综合类问题.在解答时充分体现了函数概念的知识、函数图象的知识以及问题转化的思想.值得同学们体会和反思.
练习册系列答案
相关题目