题目内容
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_ST/images0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_ST/0.png)
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值.
【答案】分析:(1)由题设知a=2,b=
.由此能求出椭圆C的方程.
(2)由点差法知PQ的中垂线交x轴于
,设M(x1,y1),N(x2,y2),直线MN:x=my+1与椭圆联立可得(3m2+4)y2+6my-9=,0
,由此能求出三角形MNT的面积的最大值.
解答:解:(1)由题设知a=2,b=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/3.png)
椭圆C的方程![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/4.png)
(2)由点差法知PQ的中垂线交x轴于![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/5.png)
设M(x1,y1),N(x2,y2),直线MN:x=my+1与椭圆联立可得(3m2+4)y2+6my-9=0![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/6.png)
令t=m2+1≥1,则![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/7.png)
故![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/8.png)
点评:本题考查椭圆C的方程,求△MNT的面积的最大值.解题时要认真审题,仔细解答,注意椭圆性质的合理运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/0.png)
(2)由点差法知PQ的中垂线交x轴于
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/2.png)
解答:解:(1)由题设知a=2,b=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/3.png)
椭圆C的方程
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/4.png)
(2)由点差法知PQ的中垂线交x轴于
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/5.png)
设M(x1,y1),N(x2,y2),直线MN:x=my+1与椭圆联立可得(3m2+4)y2+6my-9=0
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/6.png)
令t=m2+1≥1,则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/7.png)
故
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183239622770405/SYS201310241832396227704020_DA/8.png)
点评:本题考查椭圆C的方程,求△MNT的面积的最大值.解题时要认真审题,仔细解答,注意椭圆性质的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目