ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªµãA£¨0£¬1£©£¬Ö±Ïßl£ºy=kx+mÓëÔ²O£ºx2+y2=1½»ÓÚB£¬CÁ½µã£¬¡÷ABCÓë¡÷OBCµÄÃæ»ý·Ö±ðΪS1£¬S2£¬ÈôS1¡Ý2S2£¬ÇÒ¡ÏBAC=60¡ã£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©A£® | [-$\sqrt{3}$£¬$\sqrt{3}$] | B£® | £¨-¡Þ£¬-$\sqrt{3}$]¡È[$\sqrt{3}$£¬+¡Þ£© | C£® | [-$\frac{\sqrt{3}}{3}$£¬$\frac{\sqrt{3}}{3}$] | D£® | £¨-¡Þ£¬-$\frac{\sqrt{3}}{3}$]¡È[$\frac{\sqrt{3}}{3}$£¬+¡Þ£© |
·ÖÎö ÀûÓÃS1¡Ý2S2£¬ÇóµÃmµÄ·¶Î§£¬ÔÙÀûÓÃS¡÷OBC£¬¿ÉµÃ|m-1|¡Ý$\sqrt{1+{k}^{2}}$£¬¼´¿ÉÈ·¶¨kµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£ºÉèÔ²ÐÄ¡¢µãAµ½Ö±ÏߵľàÀë·Ö±ðΪd£¬d¡ä£¬Ôò
d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬d¡ä=$\frac{|m-1|}{\sqrt{1+{k}^{2}}}$£¬
¡à$\frac{{S}_{1}}{{S}_{2}}$=$\frac{d¡ä}{d}$=$\frac{|m-1|}{|m|}$¡Ý2£¬
¡à-1¡Üm¡Ü$\frac{1}{3}$£¬£¨m=0ʱҲÂú×㣩
¡ßS¡÷OBC=$\frac{1}{2}•OB•OC•sin120¡ã$=$\frac{\sqrt{3}}{4}$£¬$BC=\sqrt{3}$£¬
¡àS1=$\frac{1}{2}¡Á\sqrt{3}¡Á$$\frac{|m-1|}{\sqrt{1+{k}^{2}}}$¡Ý$\frac{\sqrt{3}}{2}$£¬
¡à|m-1|¡Ý$\sqrt{1+{k}^{2}}$£¬
¡à$\sqrt{1+{k}^{2}}$¡Ü2£¬
¡à-$\sqrt{3}$¡Ük¡Ü$\sqrt{3}$£¬
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÔ²µÄλÖùØϵ£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿