题目内容

x∈(e1,1),a=lnxb=2lnxc=ln3x,则                                          (  )
A.b<a<cB.c<a<bC.a<b<cD.b<c<a
A
根据函数的单调性,求a的范围,用比较法,比较a、b和a、c的大小.
解:因为a=lnx在(0,+∞)上单调递增,
故当x∈(e-1,1)时,a∈(-1,0),
于是b-a=2lnx-lnx=lnx<0,从而b<a.
又a-c=lnx-ln3x=a(1+a)(1-a)<0,从而a<c.
综上所述,b<a<c.
故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网