题目内容

17.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,其弦AB的中点为M,若直线AB和OM的斜率都存在(O为坐标原点),则两条直线的斜率之积为-$\frac{3}{4}$.

分析 设A(x1,y1),B(x2,y2),M(x0,y0),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,kOM=$\frac{{y}_{0}}{{x}_{0}}$.把A,B坐标代入相减化简即可得出.

解答 解:设A(x1,y1),B(x2,y2),M(x0,y0),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,kOM=$\frac{{y}_{0}}{{x}_{0}}$.
由$\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{12}$=1,$\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{12}$=1,
相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{16}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{12}$=0.
∴$\frac{2{x}_{0}}{16}+\frac{2{y}_{0}}{12}$•kAB=0,
∴$\frac{1}{8}+\frac{1}{6}{k}_{OM}•{k}_{OB}$=0,
∴kOM•kOB=-$\frac{3}{4}$.
故答案为:-$\frac{3}{4}$.

点评 本题考查了椭圆的标准方程及其性质、“点差法”、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网