题目内容
如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点.
(1)若是半径的中点,求线段的大小;
(2)设,求△面积的最大值及此时的值.
(1)(2) 时,取 得最大值为.
解析试题分析:解:(1)在△中,,
由
得,解得.
(2)∵∥,∴,
在△中,由正弦定理得,即
∴,又.
解法一:记△的面积为,则,
∴时,取得最大值为.
解法二:
即,又即
当且仅当时等号成立,
所以
∴时,取 得最大值为.
考点:余弦定理和三角形面积
点评:主要是考查了解三角形边角的转换,以及三角形面积公式的求解的综合运用,属于基础题。
练习册系列答案
相关题目