题目内容

6.已知函数$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$.
(I)若a>b>1,试比较f(a)与f(b)的大小;
(Ⅱ)若函数g(x)=f(x)-($\frac{1}{2}$)x+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.

分析 (1)先确定函数的定义域,再判断函数的单调性,最后根据单调性比较函数值的大小;
(2)先确定函数g(x)的单调性,再结合图象,将问题等价为g(x)min>0或g(x)max<0,最后解不等式.

解答 解:(1)函数$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$的定义域为(-∞,-1)∪(1,+∞),
再判断函数的单调性,∵f(x)=$lo{g}_{\frac{1}{2}}$$\frac{x+1}{x-1}$=$lo{g}_{\frac{1}{2}}$[1+$\frac{2}{x-1}$],
因为函数u(x)=$\frac{2}{x-1}$在区间(-∞,-1)和(1,+∞)都是减函数,
所以,f(x)在区间(-∞,-1)和(1,+∞)都是增函数,
∵a>b>1,根据f(x)在(1,+∞)上是增函数得,
∴f(a)>f(b);
(2)由(1)知,f(x)在区间(1,+∞)上单调递增,
所以,函数g(x)=f(x)-$(\frac{1}{2})^{x}$+m在[3,4]单调递增,
∵g(x)在区间[3,4]上没有零点,
∴g(x)min>0或g(x)max<0,
而g(x)min=g(3)=-$\frac{9}{8}$+m>0,解得m>$\frac{9}{8}$,
g(x)max=g(4)=$lo{g}_{\frac{1}{2}}\frac{5}{3}$-$\frac{1}{16}$+m<0,解得m<$\frac{1}{16}$-$lo{g}_{\frac{1}{2}}\frac{5}{3}$,
因此,实数m的取值范围为(-∞,$\frac{1}{16}$-$lo{g}_{\frac{1}{2}}\frac{5}{3}$)∪($\frac{9}{8}$,+∞).

点评 本题主要考查了对数型复合函数的单调性的应用,以及函数零点的判定,体现了数形结合的解题思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网