题目内容
若z∈C,arg(z2-4)=
,arg(z2+4)=
,则z的值是
5π |
6 |
π |
3 |
±(1+
i)
3 |
±(1+
i)
.3 |
分析:设z=x+yi(x、y∈R),算出z2-4=(x2-y2-4)+2xyi,z2+4=(x2-y2+4)+2xyi.根据复数辐角主值的定义,得关于x、y的方程组,解得x、y的值,即得z=1+
i或z=-1-
i.
3 |
3 |
解答:解:设z=x+yi(x、y∈R),则z2=(x+yi)2=(x2-y2)+2xyi
∴z2-4=(x2-y2-4)+2xyi,z2+4=(x2-y2+4)+2xyi,
∵arg(z2-4)=
,arg(z2+4)=
,
∴tan
=
=-
…①,tan
=
=
…②.
联解①②,得
或
,所以z=1+
i或z=-1-
i
故答案为:±(1+
i)
∴z2-4=(x2-y2-4)+2xyi,z2+4=(x2-y2+4)+2xyi,
∵arg(z2-4)=
5π |
6 |
π |
3 |
∴tan
5π |
6 |
2xy |
x2-y2-4 |
| ||
3 |
π |
3 |
2xy |
x2-y2+4 |
3 |
联解①②,得
|
|
3 |
3 |
故答案为:±(1+
3 |
点评:本题给出复数z2-4、z2+4的辐角主值,求复数z的值,着重考查了复数的四则运算和辐角的定义等知识,属于基础题.
练习册系列答案
相关题目