题目内容
如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.(I)若A,B两点的纵会标分别为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_ST/0.png)
(II)已知点C是单位圆上的一点,且
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_ST/images2.png)
【答案】分析:(I)根据三角函数的定义,求得sinα=
,sinβ=
.由α是锐角、β为钝角可得cosα、cosβ的值,利用两角和与差的余弦公式求得cos(β-α)=cosβcosα+sinβsinα的值.
(II)由题意可得
,设
的夹角为θ,0≤θ≤π,则有
=
.求出
的值,再利用两个向量的夹角公式求出cosθ,可得θ的值.
解答:解:(I)根据三角函数的定义,得sinα=
,sinβ=
.由α是锐角,所以,cosα=
.
由β为钝角可得 cosβ=-
.
所以,cos(β-α)=cosβcosα+sinβsinα=(-
)×
+
=
.
(II)已知点C是单位圆上的一点,且
,
,
设
的夹角为θ,0≤θ≤π,则有
=
.
展开化简可得
=-
.
可得cosθ=
=
=-
,从而可得 θ=
.
点评:本题主要考查任意角的三角函数的定义,平面向量数量积的定义,同角三角函数基本关系的运用,两角和与差的余弦函数,考查计算能力,是中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/1.png)
(II)由题意可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/6.png)
解答:解:(I)根据三角函数的定义,得sinα=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/9.png)
由β为钝角可得 cosβ=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/10.png)
所以,cos(β-α)=cosβcosα+sinβsinα=(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/14.png)
(II)已知点C是单位圆上的一点,且
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/16.png)
设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/19.png)
展开化简可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/21.png)
可得cosθ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101341957261607/SYS201311031013419572616017_DA/25.png)
点评:本题主要考查任意角的三角函数的定义,平面向量数量积的定义,同角三角函数基本关系的运用,两角和与差的余弦函数,考查计算能力,是中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201011/32/72fa5262.png)
A、偶函数 | B、奇函数 | C、不是奇函数,也不是偶函数 | D、奇偶性与k有关 |