题目内容
15.在广雅中学“十佳学生”评选的演讲比赛中,如图是七位评委为某学生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的众数和中位数分别为( )A. | 85,85 | B. | 84,86 | C. | 84,85 | D. | 85,86 |
分析 去掉最大值93和最小值79后,剩下84,84,85,86,87,由此能求出所剩数据的众数和中位数.
解答 解:由茎叶图得到:
去掉最大值93和最小值79后,剩下84,84,85,86,87,
众数是84,中位数是85.
故选:C.
点评 本题考查众数和中位数的求法,是基础题,解题时要认真审题,注意茎叶图的合理运用.
练习册系列答案
相关题目
19.已知$\overrightarrow{a}$,$\overrightarrow{b}$为平面上的两个向量,p:$\overrightarrow{a}$=0或$\overrightarrow{b}$=$\overrightarrow{0}$,q:|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则p是q的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
3.若关于x的方程$\frac{x+1}{x+2}$-$\frac{x}{x-1}$=$\frac{ax+2}{(x-1)(x+2)}$无解,求a的值为( )
A. | -5 | B. | -$\frac{1}{2}$ | C. | -5或-$\frac{1}{2}$ | D. | -5或-$\frac{1}{2}$或-2 |
10.设函数$f(x)=\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx$,若将函数f(x)的图象向右平移$\frac{π}{6}$个单位,所得图象对应函数为y=g(x),则( )
A. | y=g(x)的图象关于直线$x=-\frac{π}{3}$对称 | B. | y=g(x)图象关于原点对称 | ||
C. | y=g(x)的图象关于点$({-\frac{π}{3},0})$对称 | D. | y=g(x)图象关于y轴对称 |
7.$cos(-\frac{8π}{3})$的值为( )
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
4.某次抽奖活动在三个箱子中均放有红、黄、绿、蓝、紫、橙、白、黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3 个球均为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑、白除外)的得三等奖.问不中奖的概率是多少?( )
A. | 在0~25%之间 | B. | 在25~50%之间 | C. | 在50~75%之间 | D. | 在75~100%之间 |