题目内容

如图,已知三棱柱的侧棱与底面垂直,且,点分别为的中点.
(1)求证:平面
(2)求证:
(3)求点到平面的距离.

(1)详见解析;(2)详见解析;(3).

解析试题分析:(1)连接,利用中位线得到,然后再利用直线与平面平行的判定定理证明平面;(2)证法一是先证明,于是得到,于是得到,再证明平面,从而得到,最后利用直线与平面垂直的判定定理证明平面;证法二是先证明,得到,于是得到,再证明平面,从而得到,最后利用直线与平面垂直的判定定理证明平面;(3)利用(2)中的结论平面,结合等体积法得到
,将问题视为求三棱锥的高.
(1)证明:连接的中点 ,过点
的中点,
平面
证法一:连结,连接,在直角中,




,且
平面,又,故平面
证法二:连接,在直角中,

,即
,且平面

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网