题目内容

对某校高二年级学生参加社区服务的次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图(如图):
分组频数频率
[10,15)10n
[15,20)260.65
[20,25)3p
[25,30)m0.025
合计M1
(Ⅰ)请写出表中M,m,n,p及图中a的值;
(Ⅱ)请根据频率分布直方图估计这M名学生参加社区服务的平均次数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求恰有一人参加社区服务次数落在区间M内的概率.
(Ⅰ)由分组[15,20)内的频数是26,频率是0.65知,
26
M
=0.65,所以M=40
因为频数之和为40,所以10+26+3+m=40,m=1,n=
10
40
=0.25,p=
3
M
=
3
40
=0.075,
因为a是对应分组[15,20)的频率与组距的商,所以a=
0.65
5
=0.13;
(Ⅱ)由(Ⅰ)得分组[10,15)内的频率为0.25,分组[15,20)内的频率为0.65,分组[20,25)内的频率为0.075,分组[25,30)内的频率为0.025M名学生参加社区服务的平均次数为12.5×0.25+17.5×065+22.5×0075+
275×0025=3.125+11.375+1.6875+0.6875=16.875≈17
所以估计M名学生参加社区服务的平均次数为17;
(Ⅲ)这个样本中,参加社区服务次数不少于20次的学生共有m+1=4人
设在区间[20,25)内的人为a1,a2,a3,在区间[25,30)内的人为b,
则任选2人共6种情况:
(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),
恰有一人参加社区服务次数在区间[25,30)内的情况共有3种:(a1,b),(a2,b),(a3,b)
所以,恰有一人参加社区服务次数在区间M内的概率为p=
3
6
=
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网