题目内容
如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)
(1) 求摄影者到立柱的水平距离和立柱的高度;
(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
(1) 摄影者到立柱的水平距离为3米,立柱高为米. (2) 摄影者可以将彩杆全部摄入画面.
解析试题分析:(1) 如图,不妨将摄影者眼部设为S点,做SC垂直OB于C,
又故在中,可求得BA=3,即摄影者到立柱的水平距离为3米……… 3分
由SC=3,在中,可求得
又故即立柱高为米. -------------- 6分
(2) (注:若直接写当时,最大,并且此时,得2分)
连结SM,SN, 在△SON和△SOM中分别用余弦定理,
……8分
故摄影者可以将彩杆全部摄入画面. …………………………………………… 10分
考点:解三角形的实际应用;余弦定理。
点评:在解应用题时,分析题意,分清已知与所求,再根据 题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题。解题中,要注意正、余弦定理的应用。
练习册系列答案
相关题目