题目内容

如图,在正比例函数y=kx(k>0)图象上有一列点P1,P2,P3,P4,…,Pn,….已知n≥2时,
Pn-1Pn+1
=n
Pn
P
 
n+1
.设线段P1P2,P2P3,P3P4,…,PnPn+1的长分别为a1,a2,a3,…,an,且a1=1.
(1)求出a2,a3的值;
(2)求数列{an}的通项公式;
(3)设点Mn(n,an)(n≥2,n∈N),证明:这些点中不可能同时有两个点在正比例函数y=kx(k>0)的图象上.
分析:(1)由题设条件结合向量和的运算,知
Pn-1Pn
 |=(n-1)| 
Pn
P
 
n+1
 |
,从而得出数列{an}的递推关系式,即可得出a2,a3的值;
(2)将(1)中的a1=(2-1)a2,a2=(3-1)a3,a3=(4-1)a4.…,an=nan+1等关系式相乘即可得数列{an}的通项公式;
(3)对于结论是否定形式的命题,往往反证法证明.
解答:解:(1)由
Pn-1Pn+1
=n
Pn
P
 
n+1
Pn-1Pn
+
PnPn+1
=n
Pn
P
 
n+1

Pn-1Pn
=(n-1)
Pn
P
 
n+1
Pn-1Pn
 |=(n-1)| 
Pn
P
 
n+1
 |

即a1=(2-1)a2,a2=(3-1)a3,a3=(4-1)a4.…,an=nan+1
∴a2=1,a3=
1
2

(2)将(1)中的a1=(2-1)a2,a2=(3-1)a3,a3=(4-1)a4.…,
an=nan+1等关系式相乘得a1=1•2•3•4•…•n•an+1
an+1=
1
1•2•3•…•n
an=
1
1•2•3•…•(n-1)

(3)设点Mm(m,am),Nn(n,an)(m≠n)在正比例函数y=kx(k>0),
则am=km,an=kn,即km=
1
1•2•3•…•(m-1)
kn=
1
1•2•3•…•(n-1)

k=
1
1•2•3•…•m
k=
1
1•2•3•…•n
,从而1•2•3•…•m=1•2•3•…•n
这与m≠n矛盾,故不可能同时有两个点在正比例函数y=kx(k>0)的图象上.
点评:本题考查数列现解析几何的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地应用反证法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网