题目内容

已知等差数列{an}的各项均为正整数,a1=1,前n项和为Sn,又在等比数列{bn}中,b1=2,b2S2=16,且当n≥2时,有ban=4ban-1成立,n∈N*
(1)求数列{an}与{bn}的通项公式;
(2)设cn=
6bn
b
2
n
-1
,证明:c1+c2+…+cn
4
5
(9-
8
2n
)
分析:(1)由已知,构造出方程2q•(2+d)=16和qd=4,解得公差和公比,代入等差数列和等比数列通项公式,可得答案.
(2)由(1)中结论,求出数列{cn}的通项公式,用放缩法即可得证.
解答:解:(1)∵等差数列{an}的各项均为正整数,
∴设等差数列{an}的公差为d,d∈N,等比数列{bn}的公比为q,
则∵a1=1,b1=2,b2S2=16,当n≥2时,有ban=4ban-1成立,
∴2q•(2+d)=16…①
qd=4…②
解得q=d=2
故an=2n-1,bn=2n
(2)∵cn=
6bn
b
2
n
-1
=
6•2n
22n-1
6•2n
22n-1
=
6
2n-1

∴c1+c2+…+cn6(
1
20
+
1
2
+
1
22
+…+
1
2n-1
)
=
1
20
•(1-
1
2n
)
1-
1
2
=3(1-
1
2n
)

又由n∈N*,则0<1-
1
2n
<1

所以3(1-
1
2n
)<
32
5
(1-
1
2n
)<
4
5
+
32
5
(1-
1
2n
)
=(
36
5
-
32
5
1
2n
)=
4
5
(9-
8
2n
)

c1+c2+…+cn
4
5
(9-
8
2n
)
点评:本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.考查分析解决问题的能力和运算能力,是难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网