ÌâÄ¿ÄÚÈÝ
8£®¸ø³öµÄËĸöÃüÌ⣺¢Ù´æÔÚʵÊý¦Õ£¬Ê¹º¯Êýf£¨x£©=sin£¨x+¦Õ£©ÎªÅ¼º¯Êý£»¢Ú¡°º¯Êýg£¨x£©=$\frac{k-{2}^{x}}{1+k•{2}^{x}}$ΪÆ溯Êý¡±µÄ³äÒªÌõ¼þÊÇ¡°k=1¡±£»¢Û¶ÔÈÎÒâʵÊýa£¬·½³Ìx2+ax-1=0ÓÐʵÊý¸ù£»¢ÜÊýÁÐ{an}Âú×ãa1=1£¬an+1 =p•an+p£¨n¡ÊN*£©£¬Ôò¡°p=1¡±ÊÇ¡°ÊýÁÐ{an}ÊǵȲîÊýÁС±µÄ³äÒªÌõ¼þ£¬ÆäÖÐÕæÃüÌâµÄÐòºÅÊǢ٢ۢܣ®£¨Ð´³öËùÓÐÕæÃüÌâµÄÐòºÅ£©·ÖÎö ¸ù¾ÝÓÕµ¼¹«Ê½£¬¼°ÕýÓàÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿ÉÅжϢ٣»¸ù¾ÝÆ溯ÊýµÄ¶¨Òå¼°³äÒªÌõ¼þµÄ¶¨Ò壬¿ÉÅжϢڣ»¸ù¾ÝÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹Øϵ£¬¿ÉÅжϢۣ»¸ù¾ÝµÈ²îÊýÁеĶ¨Òå¼°³äÒªÌõ¼þµÄ¶¨Ò壬¿ÉÅжϢܣ®
½â´ð ½â£ºµ±¦Õ=$\frac{¦Ð}{2}$ʱ£¬º¯Êýf£¨x£©=sin£¨x+¦Õ£©=cosxΪżº¯Êý£¬¹Ê¢ÙÕýÈ·£»
Èôº¯Êýg£¨x£©=$\frac{k-{2}^{x}}{1+k•{2}^{x}}$ΪÆ溯Êý£¬Ôòº¯Êýg£¨-x£©=$\frac{k-{2}^{-x}}{1+k•{2}^{-x}}$=$\frac{k•{2}^{x}-1}{k+{2}^{x}}$=-g£¨x£©=-$\frac{k-{2}^{x}}{1+k•{2}^{x}}$£¬
½âµÃ£ºk=¡À1£¬
¹Ê¡°º¯Êýg£¨x£©=$\frac{k-{2}^{x}}{1+k•{2}^{x}}$ΪÆ溯Êý¡±µÄ³äÒªÌõ¼þÊÇ¡°k=¡À1¡±£¬¹Ê¢Ú´íÎó£»
¶ÔÈÎÒâʵÊýa£¬·½³Ìx2+ax-1=0µÄ¡÷=a2+4£¾0ºã³ÉÁ¢£¬¹Ê·½³ÌÒ»¶¨ÓÐʵÊý¸ù£¬¹Ê¢ÛÕýÈ·£»
¢ÜÊýÁÐ{an}Âú×ãa1=1£¬an+1 =p•an+p£¨n¡ÊN*£©£¬
µ±p=1ʱ£¬ÊýÁÐ{an}Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬
µ±p=0ʱ£¬ÊýÁÐ{an}¼´²»ÊǵȲîÊýÁÐÒ²²»ÊǵȱÈÊýÁУ¬
µ±p¡Ù1ÇÒp¡Ù0ʱ£¬ÊýÁÐ{an+$\frac{p}{p-1}$}Êǹ«±ÈΪpµÄµÈ±ÈÊýÁУ¬
¹ÊÔò¡°p=1¡±ÊÇ¡°ÊýÁÐ{an}ÊǵȲîÊýÁС±µÄ³äÒªÌõ¼þ£¬¹Ê¢ÜÕýÈ·£¬
¹ÊÕæÃüÌâµÄÐòºÅÊÇ£º¢Ù¢Û¢Ü£¬
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏΪÔØÌ壬¿¼²éÁËÈý½Çº¯ÊýµÄÐÔÖÊ£¬º¯ÊýµÄÆæżÐÔ£¬³äÒªÌõ¼þ£¬Ò»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹Øϵ£¬µÈ²îÊýÁеĶ¨Ò壬ÄѶÈÖеµ£®
A£® | Ò» | B£® | ¶þ | C£® | Èý | D£® | ËÄ |