ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)=x |
a |
a-1 |
x |
£¨¢ñ£©ÊÔ¾ÍʵÊýaµÄ²»Í¬È¡Öµ£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©ÒÑÖªµ±x£¾0ʱ£¬º¯ÊýÔÚ(0£¬
6 |
6 |
3 |
£¨¢ó£©¼Ç£¨¢ò£©Öеĺ¯ÊýF(x)=
3 |
·ÖÎö£º£¨1£©¶Ôº¯Êýf£¨x£©½øÐÐÇóµ¼£¬Áîµ¼º¯Êý´óÓÚ0¸ù¾ÝaµÄ²»Í¬ÖµÇó³öxµÄ·¶Î§£®
£¨2£©Áîf'£¨
£©=0Çó³öa¼´¿ÉµÃµ½´ð°¸£®
£¨3£©¼ÙÉè´æÔÚÇÒÉèÖ±Ïß·½³Ìy=kx£¬¸ù¾ÝµãµÄ¶Ô³ÆÇó³öÖ±ÏßбÂʼ´¿ÉµÃµ½´ð°¸£®
£¨2£©Áîf'£¨
6 |
£¨3£©¼ÙÉè´æÔÚÇÒÉèÖ±Ïß·½³Ìy=kx£¬¸ù¾ÝµãµÄ¶Ô³ÆÇó³öÖ±ÏßбÂʼ´¿ÉµÃµ½´ð°¸£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÉèÖª£ºf¡ä(x)=
-
=
£®
¢Ùµ±a£¼0ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ(-
£¬0)(0£¬
)£»
¢Úµ±0£¼a£¼1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨-¡Þ£¬0£©¼°£¨0£¬+¡Þ£©£»
¢Ûµ±a£¾1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ(-¡Þ£¬-
)¼°(
£¬+¡Þ)£®
£¨¢ò£©ÓÉÌâÉè¼°£¨¢ñ£©ÖТÛÖª
=
ÇÒa£¾1£¬½âµÃa=3£¬
Òò´Ë£¬º¯Êý½âÎöʽΪF(x)=
+
£¨x¡Ù0£©£®
£¨¢ó£©¼ÙÉè´æÔÚ¾¹ýÔµãµÄÖ±ÏßlΪÇúÏßCµÄ¶Ô³ÆÖᣬÏÔÈ»x¡¢yÖá²»ÊÇÇúÏßCµÄ¶Ô³ÆÖᣬ
¹Ê¿ÉÉèl£ºy=kx£¨k¡Ù0£©£¬ÉèP£¨p£¬q£©ÎªÇúÏßCÉϵÄÈÎÒâÒ»µã£¬P'£¨p'£¬q'£©ÓëP£¨p£¬q£©¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇÒp¡Ùp'£¬q¡Ùq'£¬
ÔòP'Ò²ÔÚÇúÏßCÉÏ£¬Óɴ˵Ã
=k
£¬
=-
£¬ÇÒq=
+
£¬q¡ä=
+
£¬
ÕûÀíµÃk-
=
£¬½âµÃk=
»òk=-
£¬
ËùÒÔ´æÔÚÖ±Ïßy=
x¼°y=-
xΪÇúÏßCµÄ¶Ô³ÆÖᣮ
1 |
a |
a-1 |
x2 |
x2-a(a-1) |
ax2 |
¢Ùµ±a£¼0ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ(-
a(a-1) |
a(a-1) |
¢Úµ±0£¼a£¼1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨-¡Þ£¬0£©¼°£¨0£¬+¡Þ£©£»
¢Ûµ±a£¾1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ(-¡Þ£¬-
a(a-1) |
a(a-1) |
£¨¢ò£©ÓÉÌâÉè¼°£¨¢ñ£©ÖТÛÖª
a(a-1) |
6 |
Òò´Ë£¬º¯Êý½âÎöʽΪF(x)=
| ||
3 |
2
| ||
x |
£¨¢ó£©¼ÙÉè´æÔÚ¾¹ýÔµãµÄÖ±ÏßlΪÇúÏßCµÄ¶Ô³ÆÖᣬÏÔÈ»x¡¢yÖá²»ÊÇÇúÏßCµÄ¶Ô³ÆÖᣬ
¹Ê¿ÉÉèl£ºy=kx£¨k¡Ù0£©£¬ÉèP£¨p£¬q£©ÎªÇúÏßCÉϵÄÈÎÒâÒ»µã£¬P'£¨p'£¬q'£©ÓëP£¨p£¬q£©¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇÒp¡Ùp'£¬q¡Ùq'£¬
ÔòP'Ò²ÔÚÇúÏßCÉÏ£¬Óɴ˵Ã
q+q¡ä |
2 |
p+p¡ä |
2 |
q-q¡ä |
p-p¡ä |
1 |
k |
p | ||
|
2
| ||
p |
p¡ä | ||
|
2
| ||
p¡ä |
ÕûÀíµÃk-
1 |
k |
2 | ||
|
3 |
| ||
3 |
ËùÒÔ´æÔÚÖ±Ïßy=
3 |
| ||
3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄµ¥µ÷ÐÔÓëÆäµ¼º¯ÊýµÄÕý¸ºµÄ¹Øϵ£¬¼´µ¼º¯Êý´óÓÚ0ʱԺ¯Êýµ¥µ÷µÝÔö£¬µ¼º¯ÊýСÓÚ0ʱԺ¯Êýµ¥µ÷µÝ¼õ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿