题目内容
设f(x)是定义在R上以6为周期的函数,f (x)在(0,3)内单调递减,且y=f (x)的图象关于直线x=3对称,则下面正确的结论是(A)f (1.5)< f (3.5)< f (6.5) (B)f (3.5)< f (1.5)< f (6.5)
(C)f (6.5)< f (3.5)< f (1.5) (D)f (3.5)< f (6.5)< f (1.5)
B
解析:f(x)是以6为周期的函数,
∴f(x)=f(x+6).
∴f(6.5)=f(0.5+6)=f(0.5).
又f(x)的图象关于x=3对称,
∴f(x)=f(6-x).
∴f(3.5)=f(6-3.5)=f(2.5).
又f(x)在(0,3)上单减,
∴f(2.5)<f(1.5)<f(0.5).
∴f(3.5)<f(1.5)<f(6.5).
练习册系列答案
相关题目