题目内容

过点C(4,0)的直线与双曲线
x2
4
-
y2
12
=1的右支交于A、B两点,则直线AB的斜率k的取值范围是(  )
A.|k|≥1B.|k|>
3
C.|k|≤
3
D.|k|<1
设A(x1,y1)、B(x2,y2),直线AB的方程为y=k(x-4),
y=k(x-4)
x2
4
-
y2
12
=1
消去y,得(3-k2)x2+8k2x-16k2-12=0.
∴x1+x2=-
8k2
3-k2
,x1+x2=
-16k2-12
3-k2

∵直线AB与抛物线的右支有两个不同的交点,
△=64k4-4(3-k2)(-16k2-12)>0
x1+x2=-
8k2
3-k2
>0
x1x2=
-16k2-12
3-k2
>0
,化简此不等式组可得k2>3,即|k|>
3

故选:B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网