题目内容
【题目】已知为椭圆上一点,分别为关于轴,原点,轴的对称点,
(1)求四边形面积的最大值;
(2)当四边形最大时,在线段上任取一点,若过的直线与椭圆相交于两点,且中点恰为,求直线斜率的取值范围.
【答案】(1)8 (2)
【解析】
(1)由题意表示出点的坐标,即可用的式子表示四边形面积,
因在椭圆上得,利用基本不等式即可求出面积的最大值。
(2)由(1)得,,设点坐标为,利用点差法表示出直线的斜率,即可求出斜率的取值范围。
(1)由题意,分别为关于轴,原点,轴的对称点,
则,,则、,
由在椭圆上得
<>∵,由基本不等式得∴,当时取等号
故当,时,四边形取最大值8
(2)由(1)得,,则的坐标设为,其中
设,,则有,
相减得
∵为中点,∴,
∴上式化为,∴
故
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【题目】为检查某工厂所生产的8万台电风扇的质量,随机抽取20台,其无故障连续使用时限(单位:h)统计如下:
分组 | 频数 | 频率 | 频率/组距 |
1 | 0.05 | 0.0025 | |
1 | 0.05 | 0.0025 | |
2 | 0.10 | 0.0050 | |
3 | 0.15 | 0.0075 | |
4 | 0.20 | 0.0100 | |
6 | 0.30 | 0.0150 | |
2 | 0.10 | 0.0050 | |
1 | 0.05 | 0.0025 | |
合计 | 20 | 1 | 0.050 |
(1)作出频率分布直方图;
(2)估计8万台电风扇中无故障连续使用时限不低于280h的有多少台;
(3)假设同一组中的数据用该组区间的中点值代替,估计这8万台电风扇的平均无故障连续使用时限.