题目内容

已知向量
OA
=(2,3),
OB
=(4,5),
OC
=(1,k)
,若A,B,C三点共线,则k=
2
2
分析:利用向量的坐标公式求出两个向量的坐标;将三点共线转化为两个向量共线,利用向量共线的充要条件,列出方程求出k的值.
解答:解:
AB
=
OB
-
OA
=(2,2)
AC
=
OC
-
OA
=(-1,k-3)

∵A、B、C三点共线
AB
AC
共线
∴2×(k-3)=-2
解得 k=2
故答案为2
点评:解决三点共线问题,常转化为以三点为起点、终点的向量共线,再利用向量共线的充要条件解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网