题目内容

9.一个几何体的三视图如图所示,则其体积等于$\frac{2}{3}$;表面积等于4+$\sqrt{6}$.

分析 根据几何体的三视图,得出该几何体长方体的一个角,画出图形,结合图形求出它的体积与表面积.

解答 解:根据几何体的三视图,得;
该几何体是三棱锥,是长宽高分别为2、1、2的长方体的一个角,
如图所示,
则其体积为V=$\frac{1}{3}$×$\frac{1}{2}$×1×2×2=$\frac{2}{3}$;
表面积为S=S△ABD+S△ABC+S△ACD+S△BCD
=$\frac{1}{2}$×2×2+$\frac{1}{2}$×2×1+$\frac{1}{2}$×2×1+$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{{(\sqrt{5})}^{2}{-(\sqrt{2})}^{2}}$
=4+$\sqrt{6}$.
故答案为:$\frac{2}{3}$,4+$\sqrt{6}$.

点评 本题考查了利用三视图求空间几何体的体积与表面积的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网