题目内容
若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( )
A.-1 B.-2
C.2 D.0
B
解析 由f(x)=ax4+bx2+c,得f′(x)=4ax3+2bx,又f′(1)=2,所以4a+2b=2,即2a+b=1,f′(-1)=-4a-2b=-2(2a+b)=-2.故选B.
练习册系列答案
相关题目
题目内容
若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( )
A.-1 B.-2
C.2 D.0
B
解析 由f(x)=ax4+bx2+c,得f′(x)=4ax3+2bx,又f′(1)=2,所以4a+2b=2,即2a+b=1,f′(-1)=-4a-2b=-2(2a+b)=-2.故选B.