题目内容

19.已知△ABC中,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=$\sqrt{3}$,则$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$$•\overrightarrow{c}$+$\overrightarrow{c}$$•\overrightarrow{a}$=-4.

分析 判断三角形的形状,求出角的余弦函数值,然后利用数量积求解即可.

解答 解:△ABC中,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=$\sqrt{3}$,
可知三角形是直角三角形.
cosA=$\frac{\sqrt{3}}{2}$,cosC=$\frac{1}{2}$.
$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$$•\overrightarrow{c}$+$\overrightarrow{c}$$•\overrightarrow{a}$=1×$2×(-\frac{1}{2})$+2×$\sqrt{3}×(-\frac{\sqrt{3}}{2})$+0=-4.
故答案为:-4.

点评 本题考查向量在结合中的应用,数量积的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网