题目内容
19.已知△ABC中,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=$\sqrt{3}$,则$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$$•\overrightarrow{c}$+$\overrightarrow{c}$$•\overrightarrow{a}$=-4.分析 判断三角形的形状,求出角的余弦函数值,然后利用数量积求解即可.
解答 解:△ABC中,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=$\sqrt{3}$,
可知三角形是直角三角形.
cosA=$\frac{\sqrt{3}}{2}$,cosC=$\frac{1}{2}$.
$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$$•\overrightarrow{c}$+$\overrightarrow{c}$$•\overrightarrow{a}$=1×$2×(-\frac{1}{2})$+2×$\sqrt{3}×(-\frac{\sqrt{3}}{2})$+0=-4.
故答案为:-4.
点评 本题考查向量在结合中的应用,数量积的求法,考查计算能力.
练习册系列答案
相关题目
4.在△ABC中,AB=AC=$\sqrt{5}$,BC=2,点D是AC的中点,点E在AB上,且$\overrightarrow{BD}$$•\overrightarrow{CE}$=-$\frac{3}{8}$,则$\overrightarrow{DE•}$$\overrightarrow{BC}$=( )
A. | -$\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | -$\frac{2}{5}$ | D. | $\frac{5}{2}$ |
14.直线x-y+2=0与圆$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数)的位置关系是( )
A. | 相离 | B. | 相切 | ||
C. | 直线过圆心 | D. | 相交但直线不过圆心 |