题目内容
1、设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素个数是( )
分析:本题是一个分步计数问题,根据所给的两个集合的元素,写出两个集合的交集与并集,根据新定义的集合规则,得到x和y分别有2和5种结果,根据分步计数原理得到结果.
解答:解:由题意知本题是一个分步计数原理,
∵集合A={-1,0,1},集合B={0,1,2,3},
∴A∩B={0,1},A∪B{-1,0,1,2,3},
∴x有2种取法,
y有5种取法
∴根据乘法原理得2×5=10,
故选B.
∵集合A={-1,0,1},集合B={0,1,2,3},
∴A∩B={0,1},A∪B{-1,0,1,2,3},
∴x有2种取法,
y有5种取法
∴根据乘法原理得2×5=10,
故选B.
点评:本题考查分步计数原理,考查集合的交集和并集的运算,是一个综合题,注意这是一个必得分题目,不要在细节上出错.
练习册系列答案
相关题目