题目内容

点M为椭圆
x2
9
+
y2
5
=1
上一点,设点M到椭圆的右准线的距离为d,已知点A(-1,2),则3|AM|+2d的最大值为
18+3
5
18+3
5
分析:利用椭圆的第一定义和第二定义、三角形三边之间的大小关系等即可得出.
解答:解:如图所示,
由椭圆
x2
9
+
y2
5
=1
可得:a2=9,b2=5,c=
a2-b2
=2

e=
c
a
=
2
3

设椭圆的左右焦点分别为F′(-2,0),F(2,0).
由椭圆的第二定义可得:
|MF|
d
=e
=
2
3
,∴|MF|=
2
3
d

又|MF|+|MF′|=2a,|AM|-|MF′|≤|AF′|,|AF|=
(-1+2)2+22
=
5

∴3|AM|+2d=3(|AM|+
2
3
d)
=3(|AM|+|MF|)
=3(|AM|+2a-|MF′|)≤3(|AF′|+6)=18+3
5

故答案为18+3
5
点评:熟练掌握椭圆的第一定义和第二定义、三角形三边之间的大小关系及其转化方法等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网