题目内容
与直线3x-2y=0平行,且过点(-4,3)的直线的一般式方程是
3x-2y+18=0
3x-2y+18=0
.分析:设与直线3x-2y=0平行,且过点(-4,3)的直线的一般式方程是 3x-2y+c=0,把点(-4,3)代入方程求出c的值,即可求得所求的直线的方程.
解答:解:设与直线3x-2y=0平行,且过点(-4,3)的直线的一般式方程是 3x-2y+c=0,把点(-4,3)代入3x-2y+c=0,求得c=18,
故所求的直线的一般式方程是 3x-2y+18=0,
故答案为 3x-2y+18=0.
故所求的直线的一般式方程是 3x-2y+18=0,
故答案为 3x-2y+18=0.
点评:本题主要考查两直线平行的性质,用待定系数法求直线方程,属于基础题.
练习册系列答案
相关题目