题目内容

若x,y,z是正实数,且x-2y+3z=0,则
y2
xz
的最小值是(  )
分析:由x-2y+3z=0可推出y=
x+3z
2
,代入
y2
xz
中,消去y,再利用均值不等式求解即可.
解答:解:∵x-2y+3z=0,
∴y=
x+3z
2

y2
xz
=
x2+9z2+6xz
4xz
6xz+6xz
4xz
=3,
当且仅当x=3z时取“=”.
故选B
点评:本小题考查了二元基本不等式,运用了消元的思想,是高考考查的重点内容.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网