题目内容

某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:
第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次
甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2
乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5
根据测试成绩,派
乙选手参赛更好.
乙选手参赛更好.
(填甲或乙)选手参赛更好,理由是
因为
.
x
=
.
x
=12.5,S2=0.12,S2=0.10,所以乙选手成绩比甲选手成绩稳定,派乙选手参赛更好.
因为
.
x
=
.
x
=12.5,S2=0.12,S2=0.10,所以乙选手成绩比甲选手成绩稳定,派乙选手参赛更好.
分析:题目给出了两组数据,可以先求出它们的平均数和方差,然后根据平均数和方差加以判断.
解答:解:
.
x
=
1
8
(12.1+12.2+13+12.5+13.1+12.5+12.4+12.2)=12.5,
.
x
=
1
8
(12+12.4+12.8+13+12.2+12.8+12.3+12.5)=12.5,
s2=
1
8
[(12.1-12.5)2+(12.2-12.5)2+(13-12.5)2+(12.5-12.5)2
+(13.1-12.5)2+(12.5-12.5)2+(12.4-12.5)2+(12.2-12.5)2]=0.12,
s2=
1
8
[(12-12.5)2+(12.4-12.5)2+(12.8-12.5)2+(13-12.5)2
+(12.2-12.5)2+(12.8-12.5)2+(12.3-12.5)2+(12.5-12.5)2]=0.10,
因为两名选手的平均数相同,所以方差小的选手发挥更稳定.
故答案为:乙选手参赛更好,因为
.
x
=
.
x
=12,5
s2=0.12s2=0.10,所以乙选手成绩比甲选手成绩稳定,派乙选手参赛更好.
点评:本题考查了平均数及方差的求法,解答的关键是熟记公式,同时注意在平均数相差不大的情况下,方差越小的稳定性越好.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网