题目内容
在直二面角α-β-l中,A∈α,B∈β,AB与α所成角为x,AB与β所成角为y,AB与l所成的角为z,则cos2x+cos2y+sin2z=
2
2
.分析:先分别作出AB与α所成角为x,AB与β所成角为y,AB与l所成角为z,再利用三角函数求解即可.
解答:解:过A、B分别作AC⊥l于C,BD⊥l于D,过B作直线平行于l,过C作直线平行于BD,两直线交于E,连接AD、AC、AE.
因α一l一β为直二面角,BD在β上,l=α∩β,BD⊥l,故BD⊥α.同理AC⊥β.
又∠BAD、∠ABC分别为AB与α、β所成的角,有∠BAD=x,∠ABC=y.
又EC∥BD,EC⊥l,AC⊥β,有AE⊥l,AE⊥BE,∠EBA=z.
∴cos2x+cos2y+sin2z=
+
+
=2
故答案为:2

因α一l一β为直二面角,BD在β上,l=α∩β,BD⊥l,故BD⊥α.同理AC⊥β.
又∠BAD、∠ABC分别为AB与α、β所成的角,有∠BAD=x,∠ABC=y.
又EC∥BD,EC⊥l,AC⊥β,有AE⊥l,AE⊥BE,∠EBA=z.
∴cos2x+cos2y+sin2z=
AD2 |
AB2 |
BC2 |
AB2 |
AE2 |
AB2 |
故答案为:2
点评:本题的考点是与二面角有关的立体几何综合,主要考查线面角,线线角,考查求三角函数的值,关键是正确找出相应的角.

练习册系列答案
相关题目