题目内容
1.已知x,y∈R+,x+y=1,则$\frac{x}{y}$+$\frac{1}{x}$的最小值为3.分析 首先,将所给的条件代入,转化为基本不等式的结构形式,然后,利用基本不等式进行求解.
解答 解:∵x,y∈R+,x+y=1,
∴$\frac{x}{y}$+$\frac{1}{x}$=$\frac{x}{y}$+$\frac{x+y}{x}$=$\frac{x}{y}$+$\frac{y}{x}$+1≥2+1=3,
故答案为:3.
点评 本题重点考查了基本不等式问题,考查等价转化思想的灵活运用,属于中档题.
练习册系列答案
相关题目
9.设函数f(x)=xm+ax(m,a为常数)的导数为f′(x)=2x+1,则数列{$\frac{f(n)}{n•{2}^{n}}$}(n∈N*)的前n项和为( )
A. | 3-$\frac{n+3}{{2}^{n}}$ | B. | 3-$\frac{n+2}{{2}^{n}}$ | C. | 3+$\frac{n-1}{{2}^{n}}$ | D. | $\frac{3}{2}$-$\frac{n+1}{{2}^{n+1}}$ |
11.已知等比数列{an}的公比为q≠-1,前n项和为Sn,若集合M={S|S=$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$},则集合M等于( )
A. | {0} | B. | {0,$\frac{1}{2}$,1} | C. | {1,$\frac{1}{2}$} | D. | {0,$\frac{1}{2}$} |